Skip to main content

DIFFERENCES BETWEEN CRYSTALLINE AND AMORPHOUS SUBSTANCES

Differences between crystal and amorphous substances:


All the substances are classified into crystals and amorphous.

1.In crystalline substances the atoms are located in a regular three dimensional arrangement, hence the ions ormolecules have well defined geometrical shape.
Amorphous substances do not have regular arrangement of
particles, therefore do not have well defined shape.

2.crystals have long range order 
Amorphous substances have short range order

3.crystals  have sharp melting point i.e., they melt at a particular
temperature.
where as amorphous substances do not have sharp melting
point i.e., they melt over a range of temperature.

4.in crystals fusion point is constant 
where as amorphous substances do not have constant heat of fusion.

5) crystals  are anisotropic, i.e.,their thermal, electrical and optical properties have different values along the three axes
Amorphous substances are isotropic, i.e., they have same values of properties in all directions.

6.crystals are true solids. 
where as amorphous materials are are pseudo – solids.

7.examples of crystals: diamond ,metallic substances and common salt etc.
examples of amorphous; rubber, plastic and polymers etc


------------------------------------------------------------------

Comments

Popular posts from this blog

BRAVIAS CRYSTALS -7 CRYSTAL SYSTEMS

Bravias crystals : There are 7 different basic crystal lattices according to the dimensions (a,b,c) and their angles( ⍺ , 𝛽, ℽ )  of unit cell which are called Bravias crystals.  1 Cubic crystal system :                   a=b=c  and α=β=γ=90  example : NaCl available systems are simple cubic, face centered and body centered cubic systems 2 Tetragonal                a=b ≠ c and  α=β=γ=90  example SiSO4 available systems : simple and body centered cubic systems. 3 Orthorhombic                        a ≠ b ≠c and  α=β=γ=90 example: BaSO4 available systems are simple, body centered ,face centered and base centered cubic systems. . 4 Monoclinic (rhombohedral )                    a ≠ b ≠c and  α=β=90γ=120 example:  Na2So4...

RUBY LASER - CONSTRUCTION AND WORKING

  Ruby laser   Ruby laser is a solid state laser. Ruby is a transparent crystal of aluminium oxide and its chemical composition is  Al 2 O 3 . An amount of aluminium atoms are replaced by chromium atoms with 0.5%. Then the crystal (Al 2 O 3 , Cr2O3) will attain a light pink colour.  Construction :   A ruby rod of length 4 cm and diameter 0.5 cm to 1 cm is used . The end faces of the rod are grounded  and polished to be parallel to each other. One face of the rod is silvered and it acts s perfect reflector. The other face is semi silvered. The ruby rod is surrounded by an optical flash helical pipe filled with Xenon gas. The two ends of Xenon pipe are connected to a high tension voltage for pumping the chromium ions to excited state. The whole arrangement is enclosed in an evacuated chamber.  Working  :   Ruby laser works  on 4 level pumping principle.  when the high tension is applied the xenon pipe relea...

UNIT CELL AND LATTICE PARAMETERS

Unit cell In Crystals the arrangement of particles is described with three dimensional geometrical  parallelepiped structure.  The unit cell is defined as the smallest size of parallelepiped structure with  minimum number of atoms. In a unit cell there are 6 faces and 8 corners. So 8 atoms are required to form a unit cell and all the  8 atoms are located at the 8 corners each. Lattice Lattice is defined as a three dimensional array of atoms. It describes the size and shape of the unit cell. Parameters of a unit cell A unit cell is described by six parameters. These parameters are three dimensions  and the  angles between them . The Dimensions of unit cell  along three axes of a unit cell are represented by (a, b ,c) . The angle between b and c is represented by α, between a and c by β and between a and b by γ. we can identify the structure of crystal by knowing the parameters of unit cell. Properties of unit cell : 1. Unit cell is...